

Wind Turbine Feasibility Study curle street flats,

DRCET - Dumbarton Road Corridor Environment Trust

MEARU - Mackintosh Environmental Architecture Research Unit

Whiteinch & Scotstoun Housing Association Ltd

Funded by: KTTBE AWARD

Context

- •Kyoto Protocol, by 2008-2012 the UK must reduce it's baseline emissions of six major greenhouse gases by 12.5 per cent from a baseline target set in 1990.
- •UK government aims to generate 10% of UK electricity supplies from renewable sources by 2010
- •Approx 52% of the UK's carbon dioxide emissions come from creating or using buildings

Location-Glasgow

High wind resource Number of high-rise buildings

	Sheltered terrain ²		Open plain ³		At a sea coast ⁴		Open sea ⁵		Hills and ridges ⁶	
	m s ⁻¹	Wm^{-2}	m s ⁻¹	Wm^{-2}	$m s^{-1}$	Wm ⁻²	m s ⁻¹	Wm^{-2}	ms-1	Wm^{-2}
500	> 6.0	> 250	> 7.5	> 500	> 8.5	> 700	> 9.0	> 800	> 11.5	> 1800
	5.0-6.0	150-250	6.5-7.5	300-500	7.0-8.5	400-700	8.0-9.0	600-800	10.0-11.5	1200-180
-	4.5-5.0	100-150	5.5-6.5	200-300	6.0-7.0	250-400	7.0-8.0	400-600	8.5-10.0	700-1200
	3.5-4.5	50-100	4.5-5.5	100-200	5.0-6.0	150-250	5.5-7.0	200-400	7.0- 8.5	400- 700
	< 3.5	< 50	< 4.5	< 100	< 5.0	< 150	< 5.5	< 200	< 7.0	< 400

Location-Garnethill

Location-Newbery Tower

- •Exposure to wind and rain
- Increased wind-speed with elevation
- Thermal mass
- Robust structure
- •Services infrastructure and grid connections
- •Flat roof -easy access for installation, maintenance and monitoring

High Rise Housing

Context

- Mass housing of 60s and 70s
- No insulation
- Expensive heating
- Poor thermal performance
- Thermal discomfort
- Condensation
- Mould growth
- High Rise Blocks

Feasibility

Form and construction of the blocks - useful features

- Height
- Structure
- Distribution efficiency
- Infrastructure
- Flat roof

Curle St High-Rise

- •Standard type built by George Wimpey in the 1970's in Glasgow
- •21 storey block maximise wind exposure
- •Only building of that height in the surrounding area
- •Structural capacity solid concrete frame with a solid concrete roof slab

Aims of the study

- •Estimate the energy demands of the building, for all domestic and common supplies.
- •Estimate the potential energy generation capacity for the building based on measurements and average wind speed, and the capacity for the roof to accommodate installation of wind turbines.
- •Assess the most fair and efficient way to integrate generating capacity with existing supply and demand infrastructure within the building.
- •Estimate economic feasibility of implementing the above measures, including capital cost, management / maintenance cost, and payback period.
- •Identify necessary technical information and design work required before the scheme can be implemented

Location- 64 Curle St, Whiteinch

- •West side of Glasgow in close proximity to the River Clyde
- •Mix of both residential and industrial development
- •Predominantly low rise development
- •Tallest building of its type in the surrounding area
- •Allows South Westerly winds to be maximised

Ariel view

Location plan

Looking North West

A galvanised steel deck and ladder have been installed to allow safe access to the roof top plant room

Proposed location of wind turbines on roof slab

Option 1 - 4no 2.5 KWh, estimated output is 20,000kWh Option 2 - 4no 6 KWh, estimated output is 48,000kWh

Technical Specification of Proposed Wind Turbines

Proven Turbines

- •Flexible Blade System
- Quietest of the market

Proven 2.5kW

Rated Output: - 2500W (2.5kW) Annual Output - 2,500-5,000 kWh Rotor Diameter: - 3.5m Hub Height: - 6.5m / 11m Weight- 190kg

Proven 6kW

Rated Output: - 6000W (6kW) Annual Output - 6,000-12,000 kWh* Rotor Diameter: - 5.5m Hub Height: - 9m / 15m Weight-400kg

Power Consumption within Dwellings

Average annual fuel consumption (for a 2 bedroom flat) is approx 7,500-8,000kWh per year.

SAP calculations indicate that this is theoretically 3,500kWh per year. If the overall energy consumption is 7,500-8,000kWh per year (for a 2 bedroom flat) then the typical electrical costs of lighting and small power appliances is 4,000-4,500kWh-which is slightly higher than expected.

Communal Area Power Consumption

Communal areas include:

- •Lighting to the emergency stairs (24hrs).
- •Lighting to the lift core and corridor (at night otherwise naturally lit).
- •Power for the lift workings and motor room
- •Lighting to the lift car
- •Lighting to concierge and plant rooms

It is estimated that this will be approximately 38,000kWh annually.

Economic Feasibility of Installing Wind Turbines

Capital Cost Prepared by Rooftop Turbine Itd/Proven- October 2007

No. of Turbines	Power (kW)	Potential Output (kWh) based on 5m/s	Cost (including installation)
1	2.5	2,500-5,000	£27,500
4	2.5	10,000-20,000	£81,000
1	6	6,000-12,000	£37,000
4	6	24,000-48,000	£119,000
6	6	36,000-72,000	£164,000

Benefits of the scheme

- •Enough electricity (non-heating sources) for approximately 15 flats (4 x 6kW turbines)
- •Displacement of approximately 21 tonnes of CO2 per annum
- ·Less reliance on traditional forms of fuel
- •Or all communal electrical demands met (lift workings and lighting)
- •All electrical demands of community flat are met
- •Estimated cost reductions: £34/flat per annum. To vulnerable households: £135/flat/annum
- •Substantially reduce fuel poverty by around 50% if savings can be passed onto tenants directly
- •Innovative community-owned energy scheme
- •Eligibility for grant support to meet capital costs
- •Environmental education, energy awareness & energy-saving campaign
- •Fits with Environment Vision 2002 (Whiteinch, Scotstoun and Yoker)

